场景+案例分析,SQL优化这么做就对了!

沙海
沙海
沙海
735
文章
2
评论
2021年3月25日01:09:35
评论
3 4156字阅读13分51秒
摘要

速读摘要

速读摘要

通过根据联接类型浏览所有行并为所有匹配WHERE子句的行保存排序关键字和行的指针来完成排序。using where,意味着无法直接通过索引查找来查询到符合条件的数据。默认是200,即in条件超过了200个数据,会导致in的代价计算存在问题,可能会导致Mysql选择的索引不准确。如果要求访问的数据量很小,则优化器还是会选择辅助索引,但是当访问的数据占整个表中数据的蛮大一部分时(一般是20%左右),优化器会选择通过聚集索引来查找数据。

原文约 2546 | 图片 4 | 建议阅读 6 分钟 | 评价反馈

场景+案例分析,SQL优化这么做就对了!

小哈学Java

点击上方蓝色“小哈学Java”,选择“设为星标”回复“资源”获取独家整理的学习资料!来源:cnblogs.com/powercto/p/14410128.html

    前言

    在应用开发的早期,数据量少,开发人员开发功能时更重视功能上的实现,随着生产数据的增长,很多SQL语句开始暴露出性能问题,对生产的影响也越来越大,有时可能这些有问题的SQL就是整个系统性能的瓶颈。

    如果有不同意见,欢迎留言指正,一起学习!

    SQL优化一般步骤

    1、通过慢查日志等定位那些执行效率较低的SQL语句

    2、explain 分析SQL的执行计划

    需要重点关注type、rows、filtered、extra。

    type由上至下,效率越来越高

    • ALL 全表扫描

    • index 索引全扫描

    • range 索引范围扫描,常用语<,<=,>=,between,in等操作

    • ref 使用非唯一索引扫描或唯一索引前缀扫描,返回单条记录,常出现在关联查询中

    • eq_ref 类似ref,区别在于使用的是唯一索引,使用主键的关联查询

    • const/system 单条记录,系统会把匹配行中的其他列作为常数处理,如主键或唯一索引查询

    • null MySQL不访问任何表或索引,直接返回结果

    虽然上至下,效率越来越高,但是根据cost模型,假设有两个索引idx1(a, b, c),idx2(a, c),SQL为select * from t where a = 1 and b in (1, 2) order by c;如果走idx1,那么是type为range,如果走idx2,那么type是ref;当需要扫描的行数,使用idx2大约是idx1的5倍以上时,会用idx1,否则会用idx2

    Extra

    • Using filesort:MySQL需要额外的一次传递,以找出如何按排序顺序检索行。通过根据联接类型浏览所有行并为所有匹配WHERE子句的行保存排序关键字和行的指针来完成排序。然后关键字被排序,并按排序顺序检索行。

    • Using temporary:使用了临时表保存中间结果,性能特别差,需要重点优化

    • Using index:表示相应的 select 操作中使用了覆盖索引(Coveing Index),避免访问了表的数据行,效率不错!如果同时出现 using where,意味着无法直接通过索引查找来查询到符合条件的数据。

    • Using index condition:MySQL5.6之后新增的ICP,using index condtion就是使用了ICP(索引下推),在存储引擎层进行数据过滤,而不是在服务层过滤,利用索引现有的数据减少回表的数据。

    3、show profile 分析

    了解SQL执行的线程的状态及消耗的时间。

    默认是关闭的,开启语句“set profiling = 1;”

    SHOW PROFILES ;SHOW PROFILE FOR QUERY  #{id};

    4、trace

    trace分析优化器如何选择执行计划,通过trace文件能够进一步了解为什么优惠券选择A执行计划而不选择B执行计划。

    set optimizer_trace="enabled=on";set optimizer_trace_max_mem_size=1000000;select * from information_schema.optimizer_trace;

    5、确定问题并采用相应的措施

    • 优化索引

    • 优化SQL语句:修改SQL、IN 查询分段、时间查询分段、基于上一次数据过滤

    • 改用其他实现方式:ES、数仓等

    • 数据碎片处理

    场景分析

    案例1、最左匹配

    索引

    KEY `idx_shopid_orderno` (`shop_id`,`order_no`)

    SQL语句

    select * from _t where orderno=''

    查询匹配从左往右匹配,要使用order_no走索引,必须查询条件携带shop_id或者索引(shop_id,order_no)调换前后顺序。

    案例2、隐式转换

    索引

    KEY `idx_mobile` (`mobile`)

    SQL语句

    select * from _user where mobile=12345678901

    隐式转换相当于在索引上做运算,会让索引失效。mobile是字符类型,使用了数字,应该使用字符串匹配,否则MySQL会用到隐式替换,导致索引失效。

    案例3、大分页

    索引

    KEY `idx_a_b_c` (`a`, `b`, `c`)

    SQL语句

    select * from _t where a = 1 and b = 2 order by c desc limit 10000, 10;

    对于大分页的场景,可以优先让产品优化需求,如果没有优化的,有如下两种优化方式:

    一种是把上一次的最后一条数据,也即上面的c传过来,然后做“c < xxx”处理,但是这种一般需要改接口协议,并不一定可行。

    另一种是采用延迟关联的方式进行处理,减少SQL回表,但是要记得索引需要完全覆盖才有效果,SQL改动如下

    SELECT t1.*FROM _t t1, ( SELECT id FROM _t WHERE a = 1 AND b = 2 ORDER BY c DESC LIMIT 10000, 10 ) t2WHERE t1.id = t2.id;

    案例4、in + order by

    索引

    KEY `idx_shopid_status_created` (`shop_id`, `order_status`, `created_at`)

    SQL语句

    SELECT *FROM _orderWHERE shop_id = 1 AND order_status IN ( 1, 2, 3 )ORDER BY created_at DESC LIMIT 10

    in查询在MySQL底层是通过n*m的方式去搜索,类似union,但是效率比union高。

    in查询在进行cost代价计算时(代价 = 元组数 * IO平均值),是通过将in包含的数值,一条条去查询获取元组数的,因此这个计算过程会比较的慢,所以MySQL设置了个临界值(eq_range_index_dive_limit),5.6之后超过这个临界值后该列的cost就不参与计算了。

    因此会导致执行计划选择不准确。默认是200,即in条件超过了200个数据,会导致in的代价计算存在问题,可能会导致Mysql选择的索引不准确。

    处理方式,可以(order_status, created_at)互换前后顺序,并且调整SQL为延迟关联。

    案例5、范围查询阻断,后续字段不能走索引

    索引

    KEY `idx_shopid_created_status` (`shop_id`, `created_at`, `order_status`)

    SQL语句

    SELECT *FROM _orderWHERE shop_id = 1 AND created_at > '2021-01-01 00:00:00' AND order_status = 10

    范围查询还有“IN、between”

    案例6、不等于、不包含不能用到索引的快速搜索。(可以用到ICP)

    select * from _order where shop_id=1 and order_status not in (1,2)select * from _order where shop_id=1 and order_status != 1

    在索引上,避免使用NOT、!=、<>、!<、!>、NOT EXISTS、NOT IN、NOT LIKE等

    案例7、优化器选择不使用索引的情况

    如果要求访问的数据量很小,则优化器还是会选择辅助索引,但是当访问的数据占整个表中数据的蛮大一部分时(一般是20%左右),优化器会选择通过聚集索引来查找数据。

    select * from _order where  order_status = 1

    查询出所有未支付的订单,一般这种订单是很少的,即使建了索引,也没法使用索引。

    案例8、复杂查询

    select sum(amt) from _t where a = 1 and b in (1, 2, 3) and c > '2020-01-01';select * from _t where a = 1 and b in (1, 2, 3) and c > '2020-01-01' limit 10;

    如果是统计某些数据,可能改用数仓进行解决;

    如果是业务上就有那么复杂的查询,可能就不建议继续走SQL了,而是采用其他的方式进行解决,比如使用ES等进行解决。

    案例9、asc和desc混用

    select * from _t where a=1 order by b desc, c asc

    desc 和asc混用时会导致索引失效

    案例10、大数据

    对于推送业务的数据存储,可能数据量会很大,如果在方案的选择上,最终选择存储在MySQL上,并且做7天等有效期的保存。

    那么需要注意,频繁的清理数据,会照成数据碎片,需要联系DBA进行数据碎片处理。

    1. 老板要我开发一个简单的工作流引擎 !2. 面试题必问: 遇到过线上问题没,你是怎么排查的?3. 精选 21道 Redis 最常问面试题!收藏一波 !4. 谈谈正则表达式的性能优化问题最近面试BAT,整理一份面试资料《Java面试BATJ通关手册》,覆盖了Java核心技术、JVM、Java并发、SSM、微服务、数据库、数据结构等等。获取方式:点“在看”,关注公众号并回复 Java 领取,更多内容陆续奉上。

    文章有帮助的话,在看,转发吧。

    谢谢支持哟 (*^__^*)

    继续阅读
    weinxin
    资源分享QQ群
    本站是一个IT技术分享社区, 会经常分享资源和教程; 分享的时代, 请别再沉默!
    沙海
    匿名

    发表评论

    匿名网友 填写信息

    :?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: