面试题:为什么 Redis 单线程能支撑高并发?

沙海
沙海
沙海
735
文章
2
评论
2021年3月16日03:54:39
评论
2 8138字阅读27分7秒
摘要

速读摘要

速读摘要

操作在一般情况下往往不能直接返回,这会导致某一文件的I/O阻塞导致整个进程无法对其它客户提供服务,而I/O多路复用就是为了解决这个问题而出现的。阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他FD对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。和macOS/FreeBSD中的kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。

原文约 5845 | 图片 10 | 建议阅读 12 分钟 | 评价反馈

面试题:为什么 Redis 单线程能支撑高并发?

点击关注 ? Java基基

点击上方“Java基基”,选择“设为星标”

做积极的人,而不是积极废人!

源码精品专栏

 

来源:draveness.me/redis-io-multiplexing

最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。

几种 I/O 模型

为什么 Redis 中要使用 I/O 多路复用这种技术呢?

首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用 就是为了解决这个问题而出现的。

Blocking I/O

先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个文件描述符(File Descriptor 以下简称 FD) 进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。

这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:

面试题:为什么 Redis 单线程能支撑高并发?

blocking-io

阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。

I/O 多路复用

虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。

阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:

面试题:为什么 Redis 单线程能支撑高并发?

I:O-Multiplexing-Mode

在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时,select 方法就会返回可读以及可写的文件描述符个数。

关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;

与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。

Reactor 设计模式

Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)

面试题:为什么 Redis 单线程能支撑高并发?

redis-reactor-pattern

文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 acceptreadwriteclose 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。

虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。

I/O 多路复用模块

I/O 多路复用模块封装了底层的 selectepollavport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。

面试题:为什么 Redis 单线程能支撑高并发?

ae-module

在这里我们简单介绍 Redis 是如何包装 selectepoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:

  • static int aeApiCreate(aeEventLoop *eventLoop)

  • static int aeApiResize(aeEventLoop *eventLoop, int setsize)

  • static void aeApiFree(aeEventLoop *eventLoop)

  • static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask)

  • static void aeApiDelEvent(aeEventLoop *eventLoop, int fd, int mask)

  • static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp)

同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:

// selecttypedef struct aeApiState {    fd_set rfds, wfds;    fd_set _rfds, _wfds;} aeApiState;// epolltypedef struct aeApiState {    int epfd;    struct epoll_event *events;} aeApiState;

这些上下文信息会存储在 eventLoopvoid *state 中,不会暴露到上层,只在当前子模块中使用。

封装 select 函数

select 可以监控 FD 的可读、可写以及出现错误的情况。

在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:

int fd = /* file descriptor */fd_set rfds;FD_ZERO(&rfds);FD_SET(fd, &rfds)for ( ; ; ) {    select(fd+1, &rfds, NULL, NULL, NULL);    if (FD_ISSET(fd, &rfds)) {        /* file descriptor `fd` becomes readable */    }}
  1. 初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;

  2. 使用 FD_SETfd 加入 rfds

  3. 调用 select 方法监控 rfds 中的 FD 是否可读;

  4. select 返回时,检查 FD 的状态并完成对应的操作。

而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfdswfds

static int aeApiCreate(aeEventLoop *eventLoop) {    aeApiState *state = zmalloc(sizeof(aeApiState));    if (!state) return -1;    FD_ZERO(&state->rfds);    FD_ZERO(&state->wfds);    eventLoop->apidata = state;    return 0;}

aeApiAddEventaeApiDelEvent 会通过 FD_SETFD_CLR 修改 fd_set 中对应 FD 的标志位:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {    aeApiState *state = eventLoop->apidata;    if (mask & AE_READABLE) FD_SET(fd,&state->rfds);    if (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);    return 0;}

整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoopfired 数组中,并返回事件的个数:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {    aeApiState *state = eventLoop->apidata;    int retval, j, numevents = 0;    memcpy(&state->_rfds,&state->rfds,sizeof(fd_set));    memcpy(&state->_wfds,&state->wfds,sizeof(fd_set));    retval = select(eventLoop->maxfd+1,                &state->_rfds,&state->_wfds,NULL,tvp);    if (retval > 0) {        for (j = 0; j <= eventLoop->maxfd; j++) {            int mask = 0;            aeFileEvent *fe = &eventLoop->events[j];            if (fe->mask == AE_NONE) continue;            if (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds))                mask |= AE_READABLE;            if (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds))                mask |= AE_WRITABLE;            eventLoop->fired[numevents].fd = j;            eventLoop->fired[numevents].mask = mask;            numevents++;        }    }    return numevents;}

封装 epoll 函数

Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd

static int aeApiCreate(aeEventLoop *eventLoop) {    aeApiState *state = zmalloc(sizeof(aeApiState));    if (!state) return -1;    state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);    if (!state->events) {        zfree(state);        return -1;    }    state->epfd = epoll_create(1024); /* 1024 is just a hint for the kernel */    if (state->epfd == -1) {        zfree(state->events);        zfree(state);        return -1;    }    eventLoop->apidata = state;    return 0;}

aeApiAddEvent 中使用 epoll_ctlepfd 中添加需要监控的 FD 以及监听的事件:

static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) {    aeApiState *state = eventLoop->apidata;    struct epoll_event ee = {0}; /* avoid valgrind warning */    /* If the fd was already monitored for some event, we need a MOD     * operation. Otherwise we need an ADD operation. */    int op = eventLoop->events[fd].mask == AE_NONE ?            EPOLL_CTL_ADD : EPOLL_CTL_MOD;    ee.events = 0;    mask |= eventLoop->events[fd].mask; /* Merge old events */    if (mask & AE_READABLE) ee.events |= EPOLLIN;    if (mask & AE_WRITABLE) ee.events |= EPOLLOUT;    ee.data.fd = fd;    if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1;    return 0;}

由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:

typedef union epoll_data {    void    *ptr;    int      fd; /* 文件描述符 */    uint32_t u32;    uint64_t u64;} epoll_data_t;struct epoll_event {    uint32_t     events; /* Epoll 事件 */    epoll_data_t data;};

其中保存了发生的 epoll 事件(EPOLLINEPOLLOUTEPOLLERREPOLLHUP)以及发生该事件的 FD。

aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoopfired 数组中,将信息传递给上层模块:

static int aeApiPoll(aeEventLoop *eventLoop, struct timeval *tvp) {    aeApiState *state = eventLoop->apidata;    int retval, numevents = 0;    retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,            tvp ? (tvp->tv_sec*1000 + tvp->tv_usec/1000) : -1);    if (retval > 0) {        int j;        numevents = retval;        for (j = 0; j < numevents; j++) {            int mask = 0;            struct epoll_event *e = state->events+j;            if (e->events & EPOLLIN) mask |= AE_READABLE;            if (e->events & EPOLLOUT) mask |= AE_WRITABLE;            if (e->events & EPOLLERR) mask |= AE_WRITABLE;            if (e->events & EPOLLHUP) mask |= AE_WRITABLE;            eventLoop->fired[j].fd = e->data.fd;            eventLoop->fired[j].mask = mask;        }    }    return numevents;}

子模块的选择

因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:

#ifdef HAVE_EVPORT#include "ae_evport.c"#else    #ifdef HAVE_EPOLL    #include "ae_epoll.c"    #else        #ifdef HAVE_KQUEUE        #include "ae_kqueue.c"        #else        #include "ae_select.c"        #endif    #endif#endif

因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:

面试题:为什么 Redis 单线程能支撑高并发?

redis-choose-io-function

Redis 会优先选择时间复杂度为 的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。

但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 ,并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。

总结

Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。

整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。

Reference

  • Select-Man-Pages

  • Reactor-Pattern

  • epoll vs kqueue

欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢

面试题:为什么 Redis 单线程能支撑高并发?

已在知识星球更新源码解析如下:

面试题:为什么 Redis 单线程能支撑高并发?

面试题:为什么 Redis 单线程能支撑高并发?

面试题:为什么 Redis 单线程能支撑高并发?

面试题:为什么 Redis 单线程能支撑高并发?

最近更新《芋道 SpringBoot 2.X 入门》系列,已经 20 余篇,覆盖了 MyBatis、Redis、MongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka、性能测试等等内容。

提供近 3W 行代码的 SpringBoot 示例,以及超 4W 行代码的电商微服务项目。

获取方式:点“在看”,关注公众号并回复 666 领取,更多内容陆续奉上。

文章有帮助的话,在看,转发吧。谢谢支持哟 (*^__^*)

阅读原文

继续阅读
weinxin
资源分享QQ群
本站是一个IT技术分享社区, 会经常分享资源和教程; 分享的时代, 请别再沉默!
沙海
匿名

发表评论

匿名网友 填写信息

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: